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Abstract
Existence of several challenges and high cost in the development of monitoring infrastructure have become major reasons

for data sparsity by statutory government agencies tasked to study pollution exposure in urban areas. As an effort to

mitigate this problem, the recent usage of satellite aerosol optical depth data along with the usage of learning algorithms

have become popular in recent times. This paper presents a novel four-staged approach using different machine learning,

deep learning and statistical methods to develop a spatio-temporal hybrid model for temporal forecasting using data from

existing stations along with satellite aerosol optical depth data for spatial interpolation. Experiments conducted on real-

world data belonging to the cities of Kolkata, Bengaluru and Mumbai show that a consistent pattern is not followed in all

the cities in all stages except in spatial interpolation where Random Forest Regression is found to surpass all other models

used. While a long short-term memory network (LSTM Auto-Encoder) when employed in temporal forecasting inside the

hybrid method outperforms others in Mumbai, a random forest regression-based method and a multi-layer perceptron-

based method outperform others similarly in Kolkata and Bengaluru, respectively.
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1 Introduction

Exposure assessment [1] has gained valuable significance

in the discipline of environmental science research for

years with the importance increasing day by day due to

continually increasing socio-economic activity. Effect of

air pollutants on urban health has become one of the most

important areas of focus particularly in recent studies

worldwide. With increased awareness of the consequences

of air pollution and its long-term impact on civilization,

new fields of research such as urban computing [2] have

gained huge traction recently. Governments all around the

world have been involved in setting up monitoring stations

in major urban centers to monitor the pollution scenario

and draft environmental policies to help control rising

pollution levels. As per a World Health Organization

(WHO) report [3], more than four fifth of all people

residing in urban regions have themselves vulnerable to air

quality levels that exceed the prescribed WHO limits.

Despite recent large-scale efforts in increasing monitoring

stations [4], data sparsity, retrieval and processing still

remain as one of the major engineering challenges that

need to be studied in great detail, coupled with high real

estate prices and expensive maintenance costs. Instrument

failure also remains one of the most inevitable challenges

agencies face when working in air quality analysis, as data

due to faulty readings become missing, therefore requiring
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additional effort involving data imputation. Thus, not only

temporal components, spatial components too pose a large

enough challenge required to be tackled in great detail by

researchers in this field.

PM2:5, a type of particulate matter having diameter less

than 2.5 micrometers, is one of the most widely studied

contributors to air pollution. Sources of PM2:5 include car

engines, fuel based energy producing machines in house-

holds and industry, dust and soil particles, etc. These par-

ticles are of grave concern as they enter deep inside the

respiratory system and are responsible for causing high

medical damage [5] due to their tiny footprint. Exposure to

excess PM2:5 levels has been largely connected to cardio-

vascular and cerebrovascular diseases, neurological ail-

ments, respiratory disorders, etc. [6]; thus, monitoring the

concentration of PM2:5 levels is of prime concern.

For monitoring and modelling of pollutants, in recent

years, various spatio-temporal-based approaches have been

used to perform spatial modelling and subsequent inter-

polation. To model the temporal aspects of the problem,

Wang et al. [7] used the widely used seasonal autore-

gressive integrated moving average (SARIMA) to model

PM2:5 time-series data of long beach in Los Angeles. Lei

et al. [8] used a hybrid approach to research the pollution

effects in Fushung, Liaoning Province in China, where they

used convolution neural networks (CNN) and Bi-direc-

tional long short-term memory networks (Bi-LSTM) to

model the spatial features and predict temporal values,

respectively. Wang et al. [9] used chemical transport

models (CTMs) and land-use regression (LUR) models to

investigate the empirical relationships between predictor

variables and PM2:5 actual values. While LURs were found

to be restricted in their capacity to capture temporal vari-

ations, CTMs were often found to vary widely in their

correspondence with pollution levels.

Long-term coverage and spatial seamlessness of data

from several satellite-based instruments have become

instrumental in monitoring of air pollutants especially in

places where adequate monitoring stations have not been

set up. AOD is a measure of the amount of prevention,

atmospheric particles pose to sunlight in a column of air

and is generally found to correlate empirically with surface

PM2:5 concentrations [10], thus making the use of AOD

important in pollution-based studies.

Taking motivation from the recent advancements made

to model both the spatial as well as the temporal aspects of

the problem, this, a novel approach, is proposed in the

paper to create a hybrid method to not only forecast the

PM2:5 values, but also spatially interpolate and produce

predictions for the entire region in focus just from histor-

ical PM2:5 time-series data from existing monitoring sta-

tions and AOD data

This study focusses on three key Indian cities of Kolk-

ata, Bengaluru and Mumbai because of the air quality

scenario and socio-economic factors prevailing in those

cities. The pollution levels of Kolkata are around three-five

times the permissible limit while Bengaluru is found to

comparatively better than other cities . Mumbai is famous

for the high socio-economic activity due to being the

financial capital of India. The common aspect to the pol-

lution scenario for all cities is the fact that the number of

monitoring stations employed are not adequate to monitor

every part of the city. In the novel four-staged approach

proposed in this research article, various models from three

different approaches namely statistical, deep learning and

machine learning are used as temporal models along with

different machine learning regressors as the intermediate

models for interconversion of AOD to PM2:5 and final

spatial interpolation.

Compared to other works put forward by researchers,

the four-staged approach proposed utilizes AOD due to

high data availability through remote sensing as a key

intermediate medium for spatial interpolation purposes.

Using easy to implement baseline models which widely

used for prediction tasks, the proposed hybrid approach

combines the predictions made in various stages, to pro-

duce final predictions for unmeasured data points in the

city grid being investigated. In doing so, this approach

assists public pollution monitoring agencies in estimating

pollution data at key places where monitoring stations are

yet to set up.

To summarize, the main contributions put forward in

this study are as follows:

– A novel hybrid approach is proposed to perform spatio-

temporal forecasts from historical real-world PM2:5

data derived from sparsely placed sites to predict the

pollution values of unknown locations.

– Evaluation of various time-series models of different

approaches including statistical, machine learning and

deep learning is performed for finding the best model

for temporal forecasts in the proposed hybrid approach.

– Usage of AOD as an intermediate medium to carry out

spatial interpolation for PM2:5 belonging to unmeasured

city grid data points has been demonstrated.

The rest of the article is organized as follows: In Section 2,

relevant studies conducted in this field are discussed.

Section 3 consists of the problem formulation. Section 4

contains a detailed description of the framework, models

used and the modelling approaches for the different stages

of the proposed approach. The findings of this work as well

as related discussion of the data are laid out in Section 5.

The conclusion and impact of the study are ultimately

presented in Section 6.
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2 Related works

A survey of the recent related research studies conducted in

the field of spatio-temporal pollution forecasting along

with the use of AOD data is presented in this section.

An innovative method known as Multi-Scale Spatial

Temporal Network (MSSTN) was proposed by Wu

et al [17] for improved detection of multi-scale spatial and

temporal patterns. MSSTN was used to make hourly pre-

dictions for PM2:5 concentrations collectively for a number

of cities on the basis of the training done on air pollution

datasets of urban regions in North China. Lindström

et al [18] proposed a method using spatial and spatio-

temporal covariates. The data from several different mon-

itoring stations were combined along with Geographic

Information System (GIS) covariates to produce NOx

predictions in the area around Los Angeles. To investigate

the bias and variance in temporal modelling, Taieb and

Atiya [19] conducted a Monte Carlo experimental study to

analyze for multistep-ahead time-series forecasting and

showed that a recursive one-step ahead strategy performs

better for short time series and when there is a presence of

a well specified model. To model chaotic time-series,

Chandra [20] proposed a nature inspired cooperative

coevolution (CC) optimization method for training recur-

rent neural networks. Xu et.al [21] used a Cubic spline

method for series smoothing which later fed into an echo

state network computed by an elastic-net algorithm. Soh

et.al [22] used a combination of artificial neural network

(ANN), CNNs, LSTMs was used to extract spatio-temporal

relations for better performance. Zhu et.al [23] analyzed

the causality relations present in air quality data using an

efficient solution to overcome the computational com-

plexity to process massive volumes of data along with

adaptation of the grid-based technique used in different

applications. An old study by Sahu et.al [24] implemented

a fully Bayesian model using Markov Chain Monte Carlo

techniques, which enabled the inference to process

unknowns as well as perform predictions in space and time.

In a related area under social network analysis, Cesario et.

al [25] and Comito [26] utilized location-based social

networks to understand human mobility and people

behavior by mining check-in patterns, thereby studying the

impact of structural patterns hidden in the nodes of a

friendship network and external environment changes on

the check-in patterns of the users.

Yang et al. [27] showed the lack of a detailed study into

the association between AOD and PM2:5. Their study

investigated the relationships between AOD and PM2:5 in

300? cities of China within the time-period from 2013 to

2017, at various regional and temporal scales. Ni et al.

[28] leveraged the backpropagation approach to model the

PM2:5 levels in the Beijing-Tianjin-Hebei (BTH) area

during 2014 to 2016, in combination with the AOD and

meteorological data. Mao et al. [29] used meteorological

variables, AOD data and pollutant predictors as input and

upon the use of geographic variability of PM2:5 and AOD

association was able to forecast pollutant concentrations 3

days in advance in eastern China. Kloog et al. [30] pro-

posed the utilization of recent advances in Moderate Res-

olution Imaging Spectroradiometer (MODIS) satellite data

processing algorithms to use high resolution AOD data to

generate grid predictions from generalized additive mixed

models. Some notable related works to this study which

inspired this study can be found mentioned in Table 1.

Unlike the existing AOD-based works discussed, the

proposed hybrid approach differs in the use of the spatial

interpolation based on AOD data and leverages the corre-

lation existing between AOD and PM2:5 found earlier to

convert the interpolated values into their corresponding

pollution values. This work utilizes various off-the-shelf

methods from machine learning, deep learning and statis-

tical approaches, which are widely available and can be

implemented easily. The four-staged approach proposed,

not only alleviates the need of good number of stations, but

also enables in reducing costs by using only historical time-

series pollution and freely available MODIS satellite data

for processing the required results. In addition, the easy

modularity of the inner-stages also helps in reuse in other

related applications as well.

3 Problem statement

Given a set of n known air quality monitoring stations S ¼
fS1; S2; :::; Sng having pollution data Pi ¼ fvi1 ; vi2 ; :::; vitg
and AOD data Xi ¼ fxi1 ;xi2 ; :::;xitg for the i th station

over a duration of t timesteps in the past, our intention is to

find the pollution data Pj ¼ fwjtþ1
;wjtþ2

; :::;wjtþt0 g over the

next t0 timesteps for each j th location belonging to the set

of m unknown locations S0 ¼ fS01; S02; :::; S0mg. Here, v and w
denote actual and predicted pollution values, respectively,

while x represent the AOD values extracted from satellite

data.

4 Proposed approach

The approach to produce hybrid methods to tackle the

problem formulated in this study can be divided into four

folds. First, the pollution data for the i th station, Pi ¼
fwitþ1

;witþ2
; :::;witþt0 g for station Si 2 S ¼ fS1; S2; :::; Sng

over the next t0 timesteps are found out using one-step

ahead prediction method. For each wit 2 Pi, the
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corresponding AOD value Kit is then found out using a

regressor. Based on the AOD predictions made, spatial

interpolation methods using satellite AOD values X are

then used to calculate the AOD values Kjt at each unknown

location Sj 2 S0 ¼ fS01; S02; :::; S0mg. Finally, these interpo-

lated AOD values are then converted back to calculate the

pollution values Pj ¼ fwjtþ1
;wjtþ2

; :::;wjtþt0 g for each Sj.

This section deals with the framework involved coupled

with the description of the modelling performed as a part of

the study.

4.1 Framework

Detailed description of the various phases involved in the

study is described as follows.

4.1.1 Data collection

The dataset used involves both pollution time-series data

and AOD values over Kolkata, Bengaluru and Mumbai.

The pollution time-series data containing daily PM2:5 val-

ues for the monitoring stations depicted in Fig. 1e over the

time-period of August 2018 to February 2020 had been

extracted from the Kaggle dataset ‘‘Air Quality Data in

India (2015-2020)’’ [31] which in turn compiled the data

from the archives maintained by the Central Pollution

Control Board (CPCB) [32] and other regional pollution

monitoring stations. As the dataset did not contain the

geographic coordinates, the geocoding of all the stations

depicted in Fig. 1e was done using Google Maps

Geocoding API.

The AOD data used had been extracted from the

MCD19A2 product data acquired from the Moderate

Resolution Imaging Spectroradiometer (MODIS) instru-

ment [33] aboard the TERA satellite made available

through a web interface as a part of the Level-1 and

Atmosphere Archive and Distribution System Distributed

Active Archive Center (LAADS DAAC) [34]. Out of the

13 datasets provided in the MCD19A2 product, the blue

band Optical Depth at 0.47 lm is used in the study. As the

data were provided in tile format, where each tile contained

AOD data corresponding to a section of the earth, tile

having family ids h26v06, h25v07 and h24v07 associated

with Kolkata, Bengaluru and Mumbai as shown with

examples in Fig. 1b, 1d and 1f were used.

4.1.2 Data preprocessing

The PM2:5 data extracted from Kaggle [31] over the time-

period of August 2018 to February 2020 contained several

missing values at random, which were imputed over a

window length m by taking the mean of the pollution

values vt�j where 1� j�m. In this study, as weekly peri-

odic patterns were observed in the pollution data for all the

cities, an appropriate window length m ¼ 7 was fixed, and

imputations were performed based on a 7-day window.

Table 1 Notable mentions of relevant spatio-temporal pollution modelling research in the past few years

Author Year Method Description

Bui et.al

[11]

2020 Spatio-Temporal Prediction using Multimodal Approach Multimodal fusion of critical factors were used to predict future

air quality levels thereby reducing the mean absolute errors of

PM2:5 prediction.

He et.al

[12]

2020 Spatio-Temporal Neural Network (STNN) STNN with an encoder-decoder architecture coupled with

region-based spatial dependencies were used to improve

accuracy.

Pu et.al

[13]

2020 Spatio-Temporal modeling of PM2:5 concentrations with

missing data problem: A case study in Beijing, China

Built a multi-stage statistical technique in which daily PM2:5

levels could be obtained with extensive spatial coverage.

Di et.al

[14]

2019 An ensemble-based model of PM2:5 levels over the

contiguous United States with high spatio-temporal

resolution

Developed an ensemble method which integrated multiple

learning techniques and predictor variables to predict diurnal

PM2:5 at 1 sq. km resolution over the contiguous United States

of America.

Stafoggia

et.al

[15]

2019 Estimation of daily PM10 and PM2:5 concentrations in

Italy, 2013-2015, using a spatio-temporal land-use

random-forest model

Used ensemble models establish a relationship between

measured PM and satellite, land use and meteorological

parameters. Predictions were made over each 1 km x 1 km

grid cell of Italy and were improved by using small-scale

predictors computed within a small buffer area around the

location.

Krishna

et.al

[16]

2019 Surface PM2:5 Estimate Using Satellite Derived Aerosol

Optical Depth over India

Integrated MODIS AOD data along with simulations from

weather research and forecasting model with chemistry

(WRF-Chem) model to ascertain the PM2:5 levels at a

resolution of 36 km over India.
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Since stations which had missing values greater than 10%

were eliminated in a pre-processing step, missing values in

the remaining stations were mostly distributed randomly

with no occurrences of missing in blocks greater than 7 day

periods. As the missing at random instances was statisti-

cally insignificant, they did not affect the overall trends in

the data during the time-periods inspected for different

stations.

To aid in model training, the time-series data were

converted into a form that is supportive of supervised

modelling approaches. To achieve this, a window length l

is chosen. The time-series data are then shifted by one

period in the backward direction from the last l times with

recording of the contents each time the shift is done. A

column wise concatenation operation results in tuples of

the form fxt�l; xt�ðl�1Þ; :::; xtg from which xt can be used as

the ground-truth.

In the first stage of AOD preprocessing, the AOD data

corresponding to different orbital overpasses were aver-

aged and scaled resulting in a two-dimensional 1200 �
1200 grid taken for further processing. To get the AOD

value for a specific monitoring station Si having the latitude

and longitude values as (/i, ki) in radians, the Haversine

distance di;j (using Eqs. 1 and 2) was first calculated with

respect to every (/j, kj) pair present in the 1200 � 1200

grid.

hij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
/j � /i

2

� �

þ cosð/jÞ cosð/iÞ sin2
ki � kj

2

� �

s

ð1Þ

dij ¼ 2r arcsin
ffiffiffiffiffi

hij
p
� �

ð2Þ

The pair having the minimum distance was taken and the

grid indices were found out. Based on the grid indices and

also considering the possibility of NaN value being present,

a 3 � 3 sub-grid G was taken and the mean of all the values

was taken as the AOD value sit at time instant t for station

Si. The formula used to average the sub-grid value for grid

indices ðxi; yiÞ is presented in Eq. 3 having g non-NaN

values.

sit ¼

P

xiþ1

k¼xi�1

P

yiþ1

l¼yi�1

Gk;l

 !

g

ð3Þ

4.1.3 Model building

As shown in Fig. 2, the hybrid methodW can be denoted as

a tuple of 4 models corresponding to different stages in the

following form presented in Eq. 4.

W ¼ hC;H; fUigni¼1;P i ð4Þ

where C, H and P are the models for temporal prediction,

PM2:5 to AOD and AOD to PM2:5 conversion, respectively.

The set fUigni¼1 refers to the set of spatial models corre-

sponding to each station Si for spatial interpolation pur-

poses. To reduce the number of combinations, only the best

models for H, fUigni¼1 and P were taken, empirically

determined from the results of the experiments performed.

In the first stage involving temporal modelling, a wide

variety of models from various types of approaches had

been used. From the category of statistical time-series

modelling approaches, Auto-Regressive (AR) [35], Auto-

Regressive Integrated Moving Average (ARIMA) [35] and

Holt-Winters [36] along with deep learning based time-

series modelling techniques such as Multi-Layer Percep-

tron (MLP) [37], Stacked [38], Bi-LSTM [38] and Auto-

Encoder [38] coupled with regression techniques such as

Linear, Polynomial, Random Forest [39], Support Vec-

tor [40] and Decision Tree [41] were used to predict the

pollution values over the next t0 timesteps using one step-

ahead predictions (OSAP) method.

After successfully prediction, in the PM2:5 to AOD

conversion stage, the forecasted PM2:5 values were con-

verted into AOD using a regressor H which could be

anyone belonging to Polynomial, Linear, Decision Tree,

Random Forest or SVR Regressors. In our experiments,

performance of multiple models was investigated and the

output from the best performing model for each city was

carried forward towards the next stage.

Following PM2:5 to AOD conversion, in the spatial

interpolation stage, respective spatial models Ui were

produced for each station Si. Each spatial model Ui was

then used to produce corresponding AOD predictions for

each unknown station Sj. The intermediate predictions � i

produced by each spatial model Ui were weighted based on

the inverse squared of the distance di;j between known Si
and unknown Sj and averaged over the total sum of the

weights using Eqs. 5 and 6.

Wi ¼
1

d2i;j
ð5Þ

Kj ¼

P

n

i¼1

ðWi � � iÞ

P

n

i¼1

Wi

ð6Þ

bFig. 1 Maps of Kolkata, Bengaluru and Mumbai depicting (a, c,
e) pollution monitoring stations and (b, d, f) sample AOD values

extracted from MODIS, respectively
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where Wi is the weight associated with each station Si and

Kj is the resulting predictions produced.

In the last stage, the final predictions for Sj were pro-

duced by converting the spatially interpolated AOD values

Kj into their corresponding PM2:5 values using regressor P
constructed similarly to H in the second stage.

In the hybrid approach proposed, it must be noted that

spatially interpolation is only conducted over other

unmeasured data points in the same city where the tem-

poral forecasting in the first stage has taken place. From

extensive experimentations before, it was observed that

using spatial models developed for one city to interpolate

data over a different city can lead to erroneous results due

to several extraneous factors which might become signifi-

cant due to location and socio-economic differences.

Hence, the spatial interpolation third stage should be ide-

ally restricted to a 50 km radius from the geographic center

of a city [42] [43].

As models H, P and Ui are singular, each hybrid-ap-

proach would be recognized by the temporal model C from

now on, in this paper.

4.2 Models

To model continuous data, three different types of

approaches had been used. In statistical approaches, two

variations of AR model (vanilla AR, ARIMA) have been

used along with a Triple Exponential Smoothening Tech-

nique (Holt-Winters) were used. AR model can described

as a linear regression model that takes input, past obser-

vations and uses them to produce a prediction for the future

time slots. Coefficients of the AR model can be solved by

ordinary least squares (OLS) [44] method or through using

Yule-Walker [45] equations. An extension of the AR

model happens to be the ARIMA model which contains

three parts : AR, I and MA. The AR component stands for

the auto-regressive terms present in the model. The I

component specifies the differencing step required to

convert non-stationary time-series to stationary. The MA

component resembles the linear combination of errors in

past time-steps. Different from traditional AR-based

approaches, the Holt-Winters model is an approach that

makes use 4 equations, namely a forecast equation and

three smoothing equations, and can be represented in

additive as well as multiplicative manners. In the current

study since seasonal fluctuations did not change the level of

the time-series considered, the additive method was

considered.

Under shallow machine learning, different types of

regression approaches were used. Linear regression is an

approach to modelling the association between indepen-

dent scalar variables xi and dependent variable y, under the

important assumption that the relationship between the two

different types of variables is linear. Similar to linear

regression, polynomial regression uses bp and e terms but

by treating different powers of the independent variable

x as independent terms. In case of SVR, a maximal margin

hyperplane is determined through an algorithm [46] which

focuses on having errors within a specific margin rather

than minimizing the error itself in contrast to other

regression models. In feature space transformation, a

variety of kernels are used. For this study, through exten-

sive experimentations, the popular radial basis function

kernel was found to yield the best results.

Decision Trees create a predictive model which maps

observations about items to conclusions. Although decision

tree approaches are mostly used for classification problems,

by proper data modelling, it can be used to produce

meaningful continuous output. To measure the efficiency,

various metrics are used of which Variance Reduction [47]

is used in case of regression trees to strategically determine

the proper splits to minimize variance. Random Forest is an

ensemble method built on top of decision trees, where

multiple trees are built by frequently resampling training

Fig. 2 Visual depiction of the hybrid model W proposed consisting of

temporal prediction model C, PM2:5 to AOD regressor H, spatial

intermediate models fUigni¼1 and AOD to PM2:5 regressor P. Pi is the

input pollution data for the known station Si while Pj represents the

predicted pollution values by hybrid modelW for the unknown station

Sj
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samples with a random subset of the features and uses

averaging to control over-fitting and enhance predictive

accuracy.

In the case of deep learning, variations of LSTM along

with a MLP method were used. Long short-term memory

(LSTM) [48] [49] networks are considered to be modified

version of recurrent neural networks (RNN). Unlike RNNs,

they do not suffer from the vanishing and exploding gra-

dient problems. The auto-encoder version of LSTM learns

the encoding for a dataset through a reduction and recon-

struction manner. After completing input reduction,

reconstruction is performed where the network tries to

generate output similar to the input as possible. A bi-di-

rectional LSTM is a form of recurrent neural networks [50]

where 2 hidden layers are linked to the paired output

having opposite directions. This benefits the output layer to

leverage from both the future and past time steps simul-

taneously. Unlike LSTMs, MLPs belong to the class of

feedforward artificial neural networks. It includes at least 3

major layers namely, input layer, hidden layer and an

output layer.

4.3 Data modelling

4.3.1 Time series modelling

The approach for modelling time-series data as depicted in

Fig. 3 required fitting the data on a training set and car-

rying out OSAP on the test/validation set as applicable.

The temporal model C was re-trained in each run on new

data. The new data were created by appending the pre-

dicted data in the i� 1 th run to the existing data Piin

provided as initial input. For each run, the resulting pre-

diction wik 8 k 2 ft þ 1; t þ 2; :::; t þ t0g was appended to

the result set Piout produced as the required output. The

predicted values produced serves the basis for the con-

version to equivalent AOD and spatial interpolation pro-

cess in later stages.

4.3.2 Inter-conversion between PM2:5 and AOD

As shown in Fig. 3, to create both regressor H for the

conversion of PM2:5 into AOD and regressor P to convert

AOD back into PM2:5, a similar approach was used. The

independent variable as applicable was labeled X and the

dependent variable was termed y. Based on the data

extracted, the AOD values and the PM2:5 for each time

instant t was found out and put under the respective vari-

ables i.e. X and y . H and P were then fitted on X based on

y acting as the ground truth.

4.3.3 Spatial interpolation modelling

In this stage, the raw data were first converted into tuples

which were then used to create the independent X and

dependent y sets. For modelling spatial data, a station Sf
was first fixed 8 f 2 f1; 2; 3; :::; ng. The AOD value at each

timestep i was used as the y value of the row, while the

tuple containing the AOD value of the fixed station Sf and

difference in latitude and longitude of the fixed station Sf
w.r.t Sj 8 j 2 f1; 2; 3; :::; i; :::; ng was taken as the X value.

The X and y sets so created based on the fixed station Sf
were then fed into corresponding intermediate model Uf

for training. After training the predictions made � f were

processed as per Eqs. 5 and 6 to produce Kj for the

Fig. 3 Flow diagram to demonstrate the modelling of data and the

resulting output
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unknown station Sj which were then converted into Pj

using regressor P.

5 Evaluation

5.1 Experimental setup

All model computations had been performed on a Linux-

based setup consisting of a 16 GB 3000 MHz DDR4 RAM

set coupled with a 6 core 3.6 GHz CPU. To speed up

matrix calculations and increase parallel processing, a RTX

3080 GPU was used.

The language of choice for the code used in this study

had been Python [51] due to the rich ecosystem consisting

of several highly efficient libraries such as Ten-

sorFlow [52], StatsModels [53] and Sci-kit Learn [54].

The presence of such libraries was effective in reducing

overall complexity of the code without any trade off with

regards to performance.

The time-series data used for this study were separated

into three groups, namely train, validation and test sets.

Train sets involved time-series pollution data from June

2019 to November 2019. Validation set required to test the

hyper-parameters spanned over the month of December

2019 while the test set which was used to report the model

performance ranged for a period of two months from

January 2020 to February 2020. For the purpose of inter-

conversion, AOD and PM2:5 values ranging over the period

June to November 2019 were taken into consideration. The

spatial modelling was done on AOD values ranging over

the interval one year before the test set period, i.e., over

January 2019 to February 2019. The choice of this interval

was due to the presence of spatial patterns in Indian cities

that are seasonal in nature. The stations were also divided

into two sets labelled known and unknown sets chosen out

of random in a ratio of 2:1.

Finally for evaluation purposes, the performances of

different models were assessed based on the following four

metrics namely, Root Mean Squared Error (RMSE) [55],

Mean Average Error (MAE) [55], Mean Squared Log Error

(MSLE) [56] and Median Absolute Error (MedAE) [57].

5.2 Intermediate results

5.2.1 Temporal modelling

Multiple models from different kinds of approaches were

used in performing one-step ahead predictions of the input

PM2:5 time-series values resulting in non-identical perfor-

mance depending on various cities.

In case of Kolkata, from the correlation plots in Fig. 4, it

can be seen that AR (Fig. 4j) performed the best with an

RMSE and MAE of 22.916 and 16.638, respectively, fol-

lowed closely by Linear Regression (Fig. 4a) with RMSE

and MAE of 22.971 and 16.759, respectively. From the

difference in RMSEs of different models, it is clearly

evident that statistical-based approaches outperformed all

deep learning and machine learning-based approaches in

terms of one step ahead PM2:5 forecasting for the city of

Kolkata. For LSTM-based approaches such as LSTM

Auto-Encoder (Fig. 4g) and Bi-Directional LSTM

(Fig. 4h), an evidence of saturation after the point of 100

can be observed, while the MLP-based approach (Fig. 4f)

does not show such kind of behavior. This saturation can

serve as an indicator of high irregularity that LSTM-based

models might not be able to properly track.

Unlike Kolkata, in case of Bengaluru, the best per-

forming model in predicting PM2:5 values turned out to be

SVR Regression (Fig. 5c) with an RMSE and MAE of

27.403 and 10.316, respectively. Another contrasting

observation that can be seen from the correlation plots in

Fig. 5 is the increased level of performance in case of deep

learning models which supposedly saturated due to irreg-

ularities in case of Kolkata. The MLP-based approach

(Fig. 5f), fared the second best with an RMSE and MAE of

27.498 and 12.494, respectively, while the different ver-

sions of LSTM such as LSTM Auto-Encoder (Fig. 5g) and

Bi-Directional LSTM (Fig. 5h) also performed signifi-

cantly better. This increase in performance can be attrib-

uted to low irregularities present in Bengaluru PM2:5 values

compared to other cities [58].

For the city of Mumbai, it can be observed from the

correlation plots in Fig. 6, if efficiency in terms of error is

to be evaluated, just like Kolkata, the AR model gave the

best MAE and RMSE with values of 15.075 and 19.625,

respectively, followed by Linear Regression (Fig. 6a) and

Random Forest(Fig. 6b). Statistical Models such as AR

(Fig. 6j), ARIMA (Fig. 6i) and Holt-Winters (Fig. 6k)

fared much better than their deep learning and machine

learning counter parts. Within the category of machine

learning models, Polynomial Regression (Fig. 6e) and

Decision Tree Regression (Fig. 6d) showed the worst

prediction performance performing even worse than all the

deep learning models. In deep learning, the MLP approach

(Fig. 6f) fared better than LSTM-based approaches such as

LSTM Auto-Encoder (Fig. 6g) and Bi-Directional LSTM

(Fig. 6h).

5.2.2 PM2:5 to AOD and AOD to PM2:5 conversion

Although the hierarchy in model performance observed in

case of Mumbai and Bengaluru is found to be similar, such

was not in the case of Kolkata. For conversion from PM2:5
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 4 Actual vs predicted correlation plots for different temporal models belonging to (a–e) machine learning, (f–i) deep learning and (j–
l) statistical approaches for the city of Kolkata
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 5 Actual vs predicted correlation plots for different temporal models belonging to (a–e) machine learning, (f–i) deep learning and (j–
l) statistical approaches for the city of Bengaluru
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 6 Actual vs predicted correlation plots for different temporal models belonging to (a-e) machine learning, (f-i) deep learning and (j-
l) statistical approaches for the city of Mumbai

Neural Computing and Applications

123



to AOD corresponding to model H in our four-staged

approach, SVR Regression is found to outperform all other

models under the machine learning category consistently in

all the cities as can be evident from Tables 2a, 3a and 4a in

all the performance metrics used for evaluation. However

in case of conversion from AOD to PM2:5 as can be seen

from Tables 2b, 3b and 4b, Linear Regression is found to

outperform in Kolkata, while SVR Regression outperforms

others in Bengaluru and Mumbai except in terms of RMSE

where Polynomial Regression is found to have a slight

advantage.

In terms of error while conversion from PM2:5 to AOD

denoted by P in our proposed four-staged approach, min-

imum error in case of MAE and RMSE can be seen in case

of Bengaluru with values of 13.736 and 20.020, respec-

tively. Kolkata suffers the most with the best performing

model having an RMSE and MAE of 38.612 and 30.377,

respectively. As mentioned before, to reduce complexity in

terms of different combinations, the best performing model

corresponding to each city is taken as the conversion model

denoted by H and P, respectively.

5.2.3 Spatial interpolation

Since reporting the performance for all the machine

learning models for every fixed station Sf belonging to

every city, the mean of the performance metrics for all the

models over all the stations is reported in Tables 5a, 5b and

5c where it can be seen that spatial interpolation of AOD

follow a similar pattern in terms of performance hierarchy

in contrast to temporal modelling, where each city almost

had a unique pattern. As can be seen from Tables 5a, 5b

and 5c, Random Forest Regression is observed to outper-

form all other machine learning-based models in all the

performance metrics except in MedAE where Decision

Table 2 Kolkata : Performance metrics during the Interconversion

phase between PM2:5 and AOD using various machine learning

models

(a) PM2:5 to AOD conversion

Conversion Model (H) MAE RMSE MSLE MedAE

Polynomial Regression 0.070 0.086 0.006 0.066

Linear Regression 0.070 0.086 0.006 0.063

Decision Tree Regression 0.125 0.183 0.022 0.077

Random Forest Regression 0.106 0.146 0.015 0.072

SVR Regression 0.061 0.087 0.006 0.045

(b) AOD to PM2:5 conversion

Conversion Model (P) MAE RMSE MSLE MedAE

Polynomial Regression 30.798 38.919 0.128 21.469

Linear Regression 30.377 38.612 0.125 20.714

Decision Tree Regression 34.529 43.097 0.173 27.030

Random Forest Regression 31.492 39.253 0.147 25.598

SVR Regression 32.286 40.776 0.145 23.453

Table 3 Bengaluru : Performance metrics during the Interconversion

phase between PM2:5 and AOD using various machine learning

models

(a) PM2:5 to AOD conversion

Conversion Model (H) MAE RMSE MSLE MedAE

Polynomial Regression 0.102 0.151 0.008 0.072

Linear Regression 0.101 0.148 0.008 0.075

Decision Tree Regression 0.132 0.178 0.012 0.088

Random Forest Regression 0.118 0.163 0.010 0.091

SVR Regression 0.088 0.142 0.007 0.054

(b) AOD to PM2:5 conversion

Conversion Model (P) MAE RMSE MSLE MedAE

Polynomial Regression 14.227 20.020 0.260 10.729

Linear Regression 14.229 19.398 0.259 12.114

Decision Tree Regression 17.380 21.285 0.367 15.740

Random Forest Regression 16.192 20.539 0.318 14.378

SVR Regression 13.736 20.209 0.248 9.318

Table 4 Mumbai : Performance metrics during the Interconversion

phase between PM2:5 and AOD using various machine learning

models

(a) PM2:5 to AOD conversion

Conversion Model (H) MAE RMSE MSLE MedAE

Polynomial Regression 0.095 0.114 0.008 0.086

Linear Regression 0.098 0.117 0.008 0.092

Decision Tree Regression 0.120 0.157 0.015 0.092

Random Forest Regression 0.097 0.129 0.010 0.075

SVR Regression 0.089 0.113 0.008 0.073

(b) AOD to PM2:5 conversion

Conversion Model (P) MAE RMSE MSLE MedAE

Polynomial Regression 22.917 28.916 0.329 18.817

Linear Regression 24.045 29.670 0.346 22.207

Decision Tree Regression 24.742 32.865 0.476 19.335

Random Forest Regression 22.320 29.925 0.385 20.338

SVR Regression 22.206 29.463 0.327 18.386
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Tree Regression had a slight edge in Kolkata and Mumbai.

The short range of error values for the three cities suggests

that the surface on which spatial interpolation is plain and

does not possess significant undulations to introduce

irregularities.

The best performing model producing the minimum

mean MAE and RMSE performance is denoted by U and is

chosen for spatial interpolation for every fixed station Sf , to

produce the required set of fUigni¼1 models for our pro-

posed four-staged approach.

5.3 Final results

5.3.1 Kolkata

As can be seen in Table 6a, Random Forest Regression

when used as the temporal model C shows the best per-

formance in terms of MAE, RMSE and MedAE with val-

ues 27.993, 37.633 and 18.458, respectively. In terms of

MSLE, ARIMA model outperformed others although with

a small margin. Under the deep learning category, methods

using Bi-Directional and LSTM Auto-Encoder show

similar performance to Random Forest Regression with

little difference in MAE, RMSE and MedAE values. In

case of statistical-based approaches the AR- and Holt-

Winters-based models performed slightly better than

ARIMA in terms of both RMSE and MAE with values

27.998 and 37.645, respectively, but only to perform a little

worse in MSLE. Even though there are little differences, it

can be observed from the relative improvement graphs in

Fig. 7 that almost all methods at the end perform very

similar to each other with changes not increasing more than

0.06% as shown in Fig. 7b.

5.3.2 Bengaluru

In case of Bengaluru, as evident from Table 6b, the MLP-

based method shows the lowest error in terms of RMSE

and MSLE with a value of 12.290 and 0.188, respectively.

Decision Tree Regression-based method performs outper-

form others in terms of average error with a value of

10.301 while in terms of MedAE, ARIMA is found to

outperform all methods with a value of 10.346. Under the

statistical category, ARIMA-based method is found to fare

the best with an RMSE of 10.307 followed by Holt-Winters

and AR-based hybrid methods. Just like in the case of

Kolkata, the relative improvements of even the best per-

forming methods with respect to the worst performing ones

(Fig. 8) are not significant as the values do not exceed 1%

as can be seen in Fig. 8a.

5.3.3 Mumbai

From the performance metrics shown in Table 6c, it can be

observed that the hybrid technique W using LSTM Auto-

Encoder as C showed the best performance in terms of the

RMSE with a value of 25.533. In terms of machine

learning-based models, the method with Random Forest

Regression outperformed all others with MAE and MSLE

values of 20.461 and 0.156, respectively. The AR model-

based method performed best among others in the statis-

tical group with an RMSE value of 25.677. On careful

examination of performance metrics presented in Table 6c

and the relative improvements of different methods are

shown in form of bar graphs Fig. 9. , the maximum devi-

ation between the best and the worst performing hybrid

method for Mumbai is found to 1.007 and 0.973 in MAE

and RMSE values, respectively. Even the maximum rela-

tive improvement is not more than 5% as can be seen from

the Machine Learning relative improvement graph in

Fig. 9a.

Table 5 Mean spatial interpolation performance of fUigni¼1 models

(a) Kolkata

Model (U) MAE RMSE MSLE MedAE

Polynomial Regression 0.059 0.091 0.004 0.042

Linear Regression 0.053 0.077 0.003 0.036

Decision Tree Regression 0.041 0.071 0.002 0.017

Random Forest Regression 0.037 0.062 0.002 0.019

SVR Regression 0.046 0.074 0.002 0.030

(b) Bengaluru

Model (U) MAE RMSE MSLE MedAE

Polynomial Regression 0.063 0.089 0.002 0.045

Linear Regression 0.072 0.102 0.002 0.052

Decision Tree Regression 0.026 0.051 0.001 0.014

Random Forest Regression 0.022 0.041 0.000 0.011

SVR Regression 0.059 0.086 0.002 0.040

(c) Mumbai

Model (U) MAE RMSE MSLE MedAE

Polynomial Regression 0.055 0.077 0.002 0.036

Linear Regression 0.056 0.079 0.002 0.037

Decision Tree Regression 0.030 0.063 0.001 0.006

Random Forest Regression 0.028 0.050 0.001 0.009

SVR Regression 0.052 0.077 0.002 0.031
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Table 6 Final performance

comparison of different hybrid

methods recognized on the basis

of the temporal model used

(a) Kolkata

½H ¼ SVR Regression, P ¼ Linear Regression and U ¼ Random Forest Regression�

Approach Temporal Model (C) MAE RMSE MSLE MedAE

Machine Learning SVR Regression 27.998 37.641 0.137 18.464

Linear Regression 28.001 37.650 0.138 18.466

Random Forest Regression 27.993 37.633 0.139 18.458

Polynomial Regression 27.998 37.644 0.136 18.472

Decision Tree Regression 27.994 37.639 0.139 18.458

Deep Learning Multi-Layer Perceptron 28.010 37.657 0.140 18.472

Bi-Directional LSTM 27.993 37.634 0.137 18.458

LSTM Auto-Encoder 27.994 37.636 0.136 18.462

Statistical AR 27.998 37.645 0.140 18.464

Holt-Winters 27.998 37.645 0.136 18.468

ARIMA 28.001 37.648 0.133 18.463

(b) Bengaluru

½H ¼ SVR Regression, P ¼ SVR Regression and U ¼ Random Forest Regression�

Approach Temporal Model (C) MAE RMSE MSLE MedAE

Machine Learning Polynomial Regression 10.400 12.369 0.190 10.578

SVR Regression 10.366 12.369 0.190 10.578

Linear Regression 10.319 12.333 0.189 10.703

Decision Tree Regression 10.301 12.325 0.189 10.633

Random Forest Regression 10.412 12.438 0.192 10.679

Deep Learning Multi-Layer Perceptron 10.316 12.290 0.188 10.397

Bi-Directional LSTM 10.320 12.302 0.189 10.530

LSTM Auto-Encoder 10.335 12.329 0.189 10.475

Statistical Holt-Winters 10.309 12.333 0.189 10.462

ARIMA 10.307 12.299 0.188 10.346

AR 10.369 12.381 0.190 10.594

(c) Mumbai

½H ¼ SVR Regression, P ¼ SVR Regression and U ¼ Random Forest Regression�

Approach Temporal Model (C) MAE RMSE MSLE MedAE

Machine Learning Polynomial Regression 21.040 26.254 0.164 17.623

SVR Regression 21.092 26.029 0.161 17.823

Random Forest Regression 20.461 25.590 0.156 18.468

Linear Regression 21.187 26.198 0.163 18.277

Decision Tree Regression 21.468 26.506 0.167 18.993

Deep Learning Multi-Layer Perceptron 20.977 25.955 0.160 19.018

Bi-Directional LSTM 20.563 25.574 0.158 18.006

LSTM Auto-Encoder 20.510 25.533 0.157 17.913

Statistical AR 20.642 25.677 0.158 18.032

Holt-Winters 20.943 26.021 0.160 19.316

ARIMA 21.249 26.452 0.164 19.516
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5.4 Discussion

The hybrid approach in this study is proposed as a com-

bination of several baseline models utilizing AOD as an

intermediate spatial interpolation medium due to high data

availability from space-based satellites setup by NASA.

The results in Sect. 5.2 display the performances of dif-

ferent such models in performing the first 3 stages for each

city taken into consideration. Having fixed the three city

specific models H; fUigni¼1 and P, all combinations of C
and the fixed hH; fUigni¼1;Pi were tested and perfor-

mances are shown in Sect. 5.3 as the output of the final

stage. As H; fUigni¼1 and P did not have any temporal

dependency and can be considered characteristic to the city

being investigated, except individual stage specific per-

formances (as shown in Sect. 5.2), the need for testing all

combinations was not required other than the one with

Fig. 7 Relative improvement graphs of hybrid methods in terms of RMSE and MAE w.r.t. worst performing ones for the city of Kolkata

Fig. 8 Relative improvement graphs of hybrid methods in terms of RMSE and MAE w.r.t. worst performing ones for the city of Bengaluru

Fig. 9 Relative improvement graphs of hybrid methods in terms of RMSE and MAE w.r.t. worst performing ones for the city of Mumbai
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various combinations of temporal model C for a specific

city.

Observing the results in sect. 5.2 and 5.3, as the dif-

ference in the best performing and the worst performing

models does not exceed the 10% mark, the relative changes

can be termed insignificant for forecasting related pur-

poses. Also since these values are low compared to the

mean MAE and mean RMSE of all the approaches, in

terms of implementation if certain models such as LSTM

Auto-Encoder becomes computationally expensive,

simpler models can also be used with relatively smaller

differences in errors.

Another important point that must be noted is that the

lack of preservation of temporal model hierarchy such as in

case of Mumbai as presented in Fig. 6 and Table 6c can be

heavily attributed to the intermediate conversion approa-

ches such as H, P and fUigni¼1 involved in the pipeline

before producing the final result. Also, the hierarchy in

model performance so established depends heavily on the

data set used for carrying out the analysis. If a different

Fig. 10 Heatmaps for the city of Kolkata, Bengaluru, Mumbai (a, d, g) before interpolation, (b, e, h) after interpolation and (c, f, i) after
conversion from AOD to PM2:5
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dataset is used, the model performance hierarchy can

change and may lead to better performance in complex

models.

The intermediate process of interpolation of AOD and

subsequent conversion to PM2:5 data for Kolkata, Ben-

galuru and Mumbai is visually depicted through heatmaps

in Fig. 10. Figs. 10a, 10d and 10g resemble the AOD

values originally taken from MODIS, which is interpolated

using spatial models Ui as per Eqs. 5 and 6 to produce

Figs. 10b, 10e and 10h, respectively. Figs. 10c, 10f and

10i represents the heatmap resulting from the conversion of

the interpolated AOD values back into PM2:5 using

regressor P. The efficacy of the interpolation process can

be identified from the difference in AOD values at already

present sites between the original and the interpolated

result. From Fig. 10g and 10h, the change in AOD values

can be found to be almost negligible indicated that the

interpolation process has been fruitful.

6 Conclusion

In this study, a novel class of hybrid spatio-temporal

models have been proposed to aid in predicting pollution

values of unknown locations taking the help of AOD data

for spatial interpolation when historical time-series values

of other locations are known. At this stage of the study,

only the AOD value along with the corresponding geo-

graphic coordinates were taken as features for spatial

interpolation and in case of temporal forecasting, only the

historical PM2:5 values were taken into consideration. Even

though complex ML models or DL solutions could have

been utilized for spatial interpolation purposes mentioned

in the third stage of the approach, the current focus was to

devise an effective methodology to produce forecasts that

are easy to implement and do not require extensive com-

putation or input data to train. As a possible future work,

exogenous variables can be taken into account not only for

both spatial interpolation and time-series forecasting pur-

poses, but also in the inter-conversion between PM2:5 and

AOD.

It is our hope that the hybrid approach proposed in this

paper enables the statutory agencies to overcome the

problems faced due to data sparsity and the difficulties in

establishing air quality monitoring stations at every part of

the city, thereby saving millions of dollars in operational

and real-estate costs. Even in case of instrument failure, we

hope that these networks will come in handy to compensate

for the missing pollution readings till the instrument

undergoes maintenance and brought back to proper work-

ing conditions.
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