
S. I . : DEEP LEARNING FOR TIME SERIES DATA

Improving temporal predictions through time-series labeling using
matrix profile and motifs

Pratik Saha1 • Pritthijit Nath2 • Asif Iqbal Middya2 • Sarbani Roy2

Received: 13 April 2021 / Accepted: 10 November 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
One of the most challenging tasks in time-series prediction is a model’s capability to accurately learn the repeating granular

trends in the data’s structure to generate effective predictions. Traditionally specially tuned statistical models and deep

learning models like recurrent neural networks and long short-term memory networks are used to tackle such problem of

sequence modeling. However in practice, factors like inadequate parameters in case of statistical models, random weight

initializations, and data inadequacy in case of deep learning models affect the resulting final predictions. As a possible

solution to these known problems, this paper introduces a novel method of time-series labeling (TSL) comprising a

combination of encoding and decoding methodologies that not only takes into account the granular structure of a time-

series data but also its underlying meta-learners for better predictive accuracy. To demonstrate the approach’s effectiveness

and capability of handling wide range of scenarios, comparisons are drawn first over different widely used statistical and

deep learning models and then applying TSL to each of them in order to showcase the resulting performance improvement

when implemented over a wide variety of real-world datasets. The experimental findings reflect an average of 25% increase

in overall performance when using TSL along with mostly similar performance of different combinations regardless of

model complexity thereby proving its efficacy in predicting periodic data.

Keywords Temporal predictions � Granularity � Matrix profile � Motifs

1 Introduction

Time-series prediction [1, 2] poses a difficult type of pre-

dictive modeling problem where along with classical

regression dependencies, complexity of repeating or non-

repeating dependence in its granular structure is also pre-

sent. Traditional deep learning models like long short-term

memory networks (LSTMs) [3] are used to predict time

series as they are capable of naturally learning features

from sequence data which makes them particularly suit-

able for the task. In addition, various statistical approaches

like Auto-Regressive (AR) [4], Auto-Regressive Integrated

Moving Average (ARIMA) [4] along with its seasonal

extension (SARIMA) [5] when specifically tuned to take

into account the periodicity and time lags of a time-series

data performs the task of prediction practically well.

However neither of these approaches takes into account the

dependence among the repeating granular subsequences

that could be used further for potentially increasing the

model’s prediction accuracy.

Granularity [6] of a time series refers to the partition of

the entire temporal series into periodically repeating time

intervals grouped by some functionality or similarity.

Motifs [7] also know as time-series chains are approxi-

mately repeating subsequences which at its core are

building blocks of a particular time series. Supervised

learning models like LSTMs try to learn these trends of

& Sarbani Roy

sarbani.roy@jadavpuruniversity.in

Pratik Saha

pratiksaha198@gmail.com

Pritthijit Nath

pritthijit.nath@ieee.org

Asif Iqbal Middya

asifim.rs@jadavpuruniversity.in

1 Department of Computer Science, SRM University,

Kattankulathur, Chennai, India

2 Department of Computer Science and Engineering, Jadavpur

University, Kolkata, India

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-021-06744-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7598-8266
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06744-7&domain=pdf
https://doi.org/10.1007/s00521-021-06744-7

evolving granular subsequences which are then used to

predict values over time. However, in certain circum-

stances, akin to any other learner method they are prone to

overfitting [8], getting affected by randomness in weight

initializations [3] and requiring large volumes data for

accurate predictions [3]. As a possible solution to facilitate

its initial learning process, the similarity between granular

structure of the data can be used as label encoded time-

series chains which can act as a pre-processing step before

training a model, predictions of which can be further post-

processed by utilizing the evolving trends (centrality

measure) in those motifs, improving overall model pre-

diction. These sequence of steps also prove to be quite

effective for long-term predictions by taking into account

the varying periodic features in due process.

Previous research work conducted in this field took into

account the granularity of a time series or the meta-learners

for better prediction accuracy. Leite et al. [9] proposed

optimal-granular-fuzzy (OGF) rule-based models which

took into account the variability and coverage of data

during the process of modeling data streams along with

statistical methods like ordered-weighted-averaging

(OWA) for forecasting, coupled with model ensembles.

Shao et al. [10–12] studied that impact of disturbance,

noise, etc., can hamper the system’s behaviour to a great

extent. Afolabi et al. [13] investigated the use of meta-

learners using the moving average (MA) method for

achieving noise reduction during the forecasting of a time

series resulting in a low signal-to-noise ratio and a scalable

multi-cluster system. Although being crucial works in

externally aided model training, these processes did not

take into account the similarity of the repeating granular

subsequences of a time series and how they could poten-

tially help in the learning process.

Taking motivation from the recent advancements in this

field, this paper proposes a novel time-series labeling

(TSL) method which uses the granularity of a time series

by taking into account the repeating nature of the under-

lying granular subsequences. This study investigates the

usage of TSL when coupled with deep learning models like

LSTMs or statistical methods like AR, ARIMA and

SARIMA, to check whether it results in better prediction

accuracy while also addressing numerous shortcomings as

mentioned before. The approach undertaken uses different

widely used deep learning and statistical models to predict

a time series into the future. TSL is then applied to each of

the methods and prediction is performed over the same

period of time in the future. Finally comparison are drawn

over the performance improvement with ordinary methods

and ordinary methods ? TSL for the same task. In TSL,

time-series chains in the original temporal domain are label

encoded and passed on as input to the models to obtain

label encoded predictions, which are then decoded back to

the original domain using the trend present in the centrality

measure of subsequences belonging to the time-series

chain of a particular type of label present in the training set.

TLS could have significant applications in time-series

forecasting [1, 14], temporal analysis of different city

dynamics [15–17], and many other domains of research

[18–24].

To summarize, the main contributions presented in this

paper are as follows :

• A novel time-series labeling (TSL) method is proposed

to improve time-series prediction that takes into

account the similarity between repeating granular

subsequences and the trend of the centrality measure

of subsequences.

• Evaluation of model peformance gain on real world

datasets in using TSL which feeds a label encoded time-

series chains [7] as pre-processing features on a

temporal dataset as input to different sequence model-

ing methods.

• Presenting evidence of similar overall performance in

models of varying complexity and discussing the choice

of using simpler models in situations when limited in

terms of computational resources.

The rest of the paper is set out as follows: In Sect. 2, recent

relevant studies conducted in this field are discussed in

detail. Section 3 lays the groundwork of the different

components that make up TSL. Section 4 demonstrates the

problem formulation along with a detailed description of

the method proposed for time-series labelling. The results

of the study are laid out in great detail in Sect. 5, along

with a detailed discussion on the performance of various

models with and without using the proposed approach. The

conclusions drawn from the findings are ultimately pre-

sented in Sect. 6.

2 Related works

This section deals with relevant research studies conducted

in the field of time-series prediction utilizing the granu-

larity of the data as an added feature engineered set for

better performance.

Hmouz et al. [6] developed a time-series architecture,

where the series was split into temporal windows leading to

formation of information granules. Later they used clus-

tering techniques to build a spatial representation of the

data along with the use of swarm optimization during

model prediction. Guo et al. [33] proposed an approach to

transform the original data using principles of justifiable

granularity. They used dynamic time warping (DTW) to

adjust lengths of temporal sequences and exploited hidden

markov models (HMM) to derive relations between

Neural Computing and Applications

123

granular time series and performed comparative analysis

through experiments on publicly available datasets. A

fuzzy set-based granular evolving modeling (FBeM)

approach was proposed by Leite et al. [34] for learning

features from imprecise datasets. This led them to take into

account endless flows of non-stationary data and structural

adaptation of models, with the FBeM outperforming sim-

ilar approaches when performed on classic Box–Jenkins

and Mackey–Glass benchmarks. A previous study by Nath

et al. [14] resampled the daily pollution data into monthly

to better forecast the long-term trends.

The choice of choosing the most promising individual

method or a combination of methods for time-series fore-

casting was tackled by Lemke et al. [35]. Using different

meta-learning approaches with an initial investigation on

which models worked best in which situations, they

improved their forecasting performance thereby showing

that a ranking-based combination of methods outperformed

simple model selection approaches. Ali et al. [36] investi-

gated the use of additional data for improving the perfor-

mance of meta-learning systems with usage of cross-

domain transfer of meta-knowledge. They demonstrated a

similarity-based cluster analysis to discover homogeneous

groups of time-series concerning performance, along with

minimizing the risk of selecting the least appropriate base-

learners. A. Abraham [37] presented a meta-learning evo-

lutionary artificial neural network (MLEANN) in which an

adaptive architecture comprising of activation functions,

connection weights, learning algorithm was used. He

explored the performance of backpropagation, conjugate

gradient, quasi-Newton, Levenberg–Marquardt algorithm

chaotic time series. Its effectiveness as a framework to

design neural networks that were smaller, faster, and had a

better-generalized performance was also described. Other

recent scientific works related to this study are summarized

in Table 1.

The merits of the novel method proposed in this paper

distinguishes itself from the related works described in the

following ways. First, all the motifs of a time series are

found out through similarities between repeating granular

subsequences using their Z-normalized euclidian distances

with respect to each other. These motifs are then label

encoded and passed on as input to models capable of time-

series prediction. Second, to aid in model training and

counter problems like varying number of hyper-parameters

and requirement of domain expertise for best parameter

selection [38], the usage of a combination of encoding and

decoding time series in TSL is employed where the trend in

the amplitude of similar subsequences in each time-series

chain can act as a meta-learning feature during prediction.

Third, a comparative study of the model performance using

and not using TSL with deep learning models like stacked

LSTMs and statistical models like AR, ARIMA and

SARIMA on various real-world datasets is also presented

to demonstrate the method’s efficacy.

3 Background

In this section, the underlying methodologies that consti-

tute TSL namely the usage of matrix profile and time-series

chains have been explained.

3.1 Matrix profile

A matrix profile [39] provides us with the distances

between all subsequences and their corresponding nearest

neighbours which is used as a part of our methodology to

label encode a time series.

To better explain matrix profile, a few terminologies

have to be formally introduced. In a time series T having

length n, the ith subsequence Ti;m is subset of continuous

values of length m written as Ti;m ¼ fti; tiþ1; . . .; tiþm�1g
where 1� i� n� mþ 1. For each Ti;m, a distance profile

Di can be computed after taking their Z-normalized

euclidean distances between Ti;m with all subsequences in

the same time series. Specifically, Di is a vector of such

distances between a particular subsequence Ti;m and each

susequences in time series T written as Di ¼ ½di;1; di;2; :::

di;n�mþ1� where di;j is the distance between Ti;m and Tj;m
and 1� i; j� n� mþ 1. A matrix profile M, can be for-

mally represented by M ¼ ½minðD1Þ;minðD2Þ; . . .;
minðDn�mþ1Þ� where minðDiÞ is the minimum Z-normal-

ized euclidean value in Di. This entire process has been

visually depicted in Fig. 1.

To store the location of the nearest neighbour or the

closest match, a companion data structure called matrix

profile index denoted by I is used. It is represented as a

vector of integers I ¼ ½I1; I2; :::; In�mþ1� where Ii ¼ j if

di;j = minðDiÞ. This helps in retrieving the nearest neigh-

bour for each Ti;m query by accessing the matrix profile

index’s ith element.

To implement the concept of matrix profile, stump()

method from the stumpy package [40] in python is used.

The stump() method takes as input a time series T and the

subsequence length m and provides a modified matrix

profile Mmod ¼ ½A1; A2; :::; An�mþ1� as output, where

Ai2½1; 2; ...; n�mþ1� ¼ fminðDiÞ; Ii; ILi; IRig. Here IL and IR

are the left and right matrix profile indices which are

explained in Sect. 3.2.

3.2 Time-series chains

Time-series chains [41] are informally considered as motifs

[7] that evolve or drift in some direction over time. They

Neural Computing and Applications

123

have a property of directionality in them, as demonstrated

in Fig. 2. To better understand the underlying working of

time-series chains a few terms need to be considered.

The ith left distance profile DLi and ith right distance

profile DRi of a time series T are vectors of euclidean

distances between a particular subsequence Ti;m and each

subsequences that appear before and after Ti;m, respec-

tively. The left nearest neighbour of Ti;m, LNNðTi;mÞ and a

right nearest neighbour RNNðTi;mÞ are subsequences that

appear before and after Ti;m, respectively. Formally

LNNðTi;mÞ ¼ Tj;m if di;j ¼ minðDLiÞ and RNNðTi;mÞ ¼
Tj;m if di;j ¼ minðDRiÞ. Vectors called left matrix profile

ML and right matrix profile MR can be used to represent the

Z-normalized euclidean distances between all subse-

quences and their left and right nearest neighbours,

respectively. Formally they can be written as ML ¼
½minðDL1Þ; minðDL2Þ; :::; minðDLn�mþ1Þ� and MR ¼
½minðDR1Þ; minðDR2Þ; :::; minðDRn�mþ1Þ� where DLi and

DRið1� i� n� mþ 1Þ. Companion vectors called left

matrix profile index IL and right matrix profile index IR

stores the location of the left and right nearest neighbour

for each ith element in ML and MR. They can be formally

denoted as IL ¼ ½ILi; IL2; :::; ILn�mþ1� and

IR ¼ ½IRi; IR2; :::; IRn�mþ1� where ILi ¼ j and IRi ¼ j if

LNNðTi;mÞ ¼ Tj;m and RNNðTi;mÞ ¼ Tj;m, respectively.

In a time series T, a time-series chain is an ordered set of

subsequences TSC ¼ fTC1;m; TC2;m; ::: TCw;mg where

indices C1�C2� :::�Cw. For any 1� k�w� l, we have

LNNðTCðkþ1Þ;mÞ = TCk;m and RNNðTCk;mÞ = TCðkþ1Þ;m. Here

w denotes the length of the time-series chain.

This is implemented using the allc() function from the

stumpy package [40] in python. The allc() method takes in

the left matrix profile indices IL and right matrix profile

indices IR as input and provides an all chain set

S ¼ ½S1; S2; :::Sr� which is a 2D-array as output. Here r is

the total no. of time-series chains and for each ith element

Si ¼ fxj1 ; xj2 ; :::xjgig, here xj is the starting index of a sub-

sequence of ith type of time-series chain and gi is the total

no. of elements in the ith row.

4 Problem formulation and proposed
approach

This section deals with the formulation of the problem

statement along with the proposed approach used in this

study.

Table 1 Summary of granular and meta-learning based methods of time-series prediction proposed by researchers in recent decades

Author Year Method Description

Dong

et al.

[25]

2008 Fuzzy Clustering based granular time-

series prediction

Used fuzzy clustering to construct information granules that captures relations

among them to construct a forecasting mechanism with further performance

analysis on other such models

Froelich

et al.

[26]

2017 Fuzzy Cognitive Map (FCM) based

granulation

Developed a forecasting model using FCM using a sequence of vectors of

maximal degree of activation on a fuzzy set described by its bounds and

modal values

Deng

et al.

[27]

2016 Multi-granularity combined multi-factor

prediction model

Proposed a clustering algorithm to forecast fuzzy trends in different granular

spaces using particle swarm techniques on real world datasets

Jana et al.

[28]

2020 Maximal Overlap Dis-crete Wavelet

Transformation (MODWT)

Proposed a granular deep learning approach with evaluation using Boruta

algorithm-based feature selection model. Final prediction was obtained by

aggregating the decomposed components implemented over real-world

energy consumption datasets

Wang

et al.

[29]

2009 Forecasting methods based on selection

rule

Used the trend, seasonality, periodicity, skewness, etc., as a meta-learning

feature set and a derived weighting schema for improving forecasting

accuracy

Gordon

et al.

[30]

2019 Meta-Learning approximate Probabilistic

Inference for Prediction (ML-PIP)

Extended upon the existing probabilistic interpretations of meta-learning to

cover a broad class of methods with few-shot learning datasets as inputs

during model training

Yao et al.

[31]

2019 Spatio-Temporal Prediction A meta-learning paradigm that learns a generalized initialization of a Spatio-

temporal approach was used to demonstrate long term prediction

Zhou

et al.

[32]

2012 Back Propagation Neural Network Model

(BPNN)

Improved an EMD learning rate based model with a rating method to identify

the best neural network model for the prediction of gold prices

Neural Computing and Applications

123

4.1 Problem statement

Given a time series P ¼ fv1; v2; :::; vtg over a duration of

t timesteps in the past, our intention is to first label encode

them from the original domain into PL ¼ fx1;

x2; :::; xt=mg where corresponding to a subsequence of

length m, label xk 2 L ¼ fl1; l2; :::; lng and L is the set of

n different category of labels used. Based on the encoded

time-series PL prediction is made for next t0=m timesteps in

the future to produce P0
L ¼ fx0

t=mþ1; x0
t=mþ2; :::;

x0
ðtþtÞ=mg. Using PL

0 we intend to finally decode the time

series into the original domain to produce predictions

P0 ¼ fv0tþ1; v0tþ2; :::; v0tþtg.

Fig. 1 Visual representation of matrix profile formation along with its

relationship with the distance profile

Fig. 2 Example of all subsequences falling under a particular type or

label of time-series chain in PM2.5 dataset [42]. Here, different

subsequences Ti;m belongs to a specific label Fig. 3 General overview of the proposed approach using time-series

labeling

Neural Computing and Applications

123

4.2 Proposed approach

An overview of TSL is shown in Fig. 3. Here, the training

part of the raw data is first encoded to a labeled time series

and prediction is performed using various time-series pre-

diction models. Decoding is then performed on labeled

predictions ’PL using the projected weighted percentage

changes of previously occurred time-series chains corre-

sponding to the predicted labels, to finally produce ’P the

decoded predictions.

To perform the conversion from P to PL, stump() [40]

method is used for finding out the matrix profile of the time

series. Its output is used by the allc() [40] method to cat-

egorize the different time-series chains formed along with

finding the starting indices of subsequences of each label.

This implementation is described in detail in Algorithm 1.

Prediction is made using the label encoded time series PL

for the next t0=m timesteps by various time-series predic-

tion models like LSTMs, AR, ARIMA and SARIMA to

produce P0
L.

In order to decode P0
L, a two step process is used where

first the projected weighted percentage change

PCL ¼ fXl1 ;Xl2 ; . . .;Xlng is found out for each category of

labels where L represents the set of labels and Xi represents

a particular label type. This is implemented using Algo-

rithm 2. An assumption is undertaken that the predicted

labeled subsequence will be most similar to the last

occurring subsequence of the time-series chain corre-

sponding to the same label, thus weights are distributed

accordingly in a decreasing manner (Line 14 and 15 of

Algorithm 2). For the second part, Algorithm 3 is used to

decode P0
L by multiplying the projected weighted percent-

age change Xi with values from the last occurring subse-

quence in P corresponding to x0
i. Finally to evaluate the

performance of the method, metrics like root-mean-square

error and mean absolute error are calculated and compared.

4.3 Models

To compare the performance of our proposed approach,

different sequence learner models like LSTM, AR, ARIMA

and SARIMA with and without time-series labeling (TSL)

as a pre and post processing step are used to implement the

same exact task of time-series prediction over a fixed

period of time.

LSTM [3] networks are a special kind of recurrent

neural networks (RNN) especially designed to remember

information for longer periods of time. They are explicitly

engineered to counter the problem of vanishing gradient,

unlike RNNs which are very eaisily affected by it. LSTMs

comprise of four interacting layers in their repeating

modules compared to one in RNNs.

Neural Computing and Applications

123

Mathematically the layers of an LSTM network can be

expressed as follows: 1–6:

ft ¼ rgðWf xt þ Uf ht�1 þ bf Þ ð1Þ

it ¼ rgðWixt þ Uiht�1 þ biÞ ð2Þ

ot ¼ rgðWoxt þ Uoht�1 þ boÞ ð3Þ

~ct ¼ rhðWcxt þ Ucht�1 þ bcÞ ð4Þ

ct ¼ ft � ct�1 þ it � ~ct ð5Þ

ht ¼ ot � rhðctÞ ð6Þ

where ft, it, ot and ~ct are the activation vectors of forget

gate, input gate, output gate and cell input gate, respec-

tively. ct and ht are the cell state and hidden state vectors.

xt is the input state vector. Matrices of the form Wq and Uq,

respectively, contain the weights of the input and recurrent

connections. In activation functions, rh denotes the

hyperbolic tangent function while rc denotes the sigmoid

function.

An AR model [4] is a statistical approach to time-series

prediction which takes an input of the previous observa-

tions and predicts the values at the next time step. The

model can be described as below:

Xt ¼ cþ
Xp

i¼1

uiXt�i þ et ð7Þ

where /1;/2; . . .;/p are the parameters of the model, c is

the constant term and �i is the noise term.

An ARIMA Model [4] consists of an auto-regressive

(AR), integrated (I) and a moving average (MA) compo-

nent to better understand a time-series data or to predict a

future time-series data. The AR component shows that the

evolving variable of interest is regressed on its own lagged

values. Replacement of the present values and their pre-

vious values are indicated by the I component. The MA

component indicates that the regression error is a linear

combination of error terms that occurred in the past. The

ARIMA model can be expressed as following equation 8.

1 �
Xp

i¼1

/iL
i

 !
ð1 � LÞdXt ¼ dþ 1 þ

Xq

i¼1

hiL
i

 !
et ð8Þ

where p, d and q denote the time lags of the AR compo-

nent, the degree of differencing and the order of the MA

component, respectively.

The seasonal ARIMA Model (SARIMA) [5] is an

extension of the ARIMA Model, with additional seasonal

component along with the existing AR, I and MA terms as

well a periodic term denoted by m.

4.4 Data modeling

For each model train-test split was performed on the data

keeping the size of the test set uniform in all cases which

was taken to be 180 timesteps, this was specifically ensured

to provide a uniform base for comparison between different

methods across various datasets.

The subsequence length m used to label the time series

in Sect. 4.2 was chosen to be 180 after several experiments

implementing a range of values from 30 to 360 timesteps.

In the course of all the experiments which were performed,

180 timesteps provided an overall least RMSE over the

final test set results throughout all the models.

5 Evaluation and results

In this section, the evaluation setup, description of datasets

used along with the the model performance of different

statistical and deep learning-based methods with and

without TSL are compared and discussed in great detail.

5.1 Experimental setup

The entire study had been carried out on Google Colab

[45, 46]. A virtual instance containing 2 single core hyper

threaded Intel Xeon CPU Processor clocked at 2.3 Ghz

coupled with 13 GB DDR4 RAM was used for carrying out

the mathematical computations. For deep learning pur-

poses, a 12 GB NVIDIA Tesla K80 GPU was also enabled

by Google Colab as a hardware accelerator to speed up

matrix related calculations in deep learning methodologies.

The developmental code for this study was based on

python [47], due to the presence of good high-end libraries

like numpy [48], tensorflow [49], statsmodels [50] and sci-

kit learn [51] to help in decreasing the overall complexity

of the code without compromising in efficiency and

performance.

5.2 Data description

Five real-world datasets had been used to demonstrate our

proposed approach and its effectiveness to tackle different

scenarios.

The particulate matter PM2.5 and PM10 datasets were

of Kolkata, India and were provided by the central pollu-

tion control board (CPCB) [42], the statutory organisation

responsible for providing field information regarding pol-

lution of various places throughout the country. The

monitoring stations were positioned at Victoria Memorial

Hall (22:5448� N, 88:3426� E), supplemented with data

procured from other nearby stations. Preliminary analysis

Neural Computing and Applications

123

of the data led to finding it being daily in nature, spanning

almost four years from 10th January 2016 to 18th February

2020 shown in Fig. 4a, b. Due to external factors such as

hardware failure, maintenance operations, etc. Large

chunks of the raw data extracted were found to be missing.

Hence, these values were needed to be either found out

from other external sources or have to be internally

imputed using various techniques. These missing daily

PM2.5 and PM10 values were extracted from the US

Department of State’s AirNow [52] web portal.

The Temperature dataset [43] used for the study was

gathered from Kaggle [53] and was also of Kolkata, India.

The daily data spanned over the time period from 11 June,

2015 to 13 May, 2020 as shown in Fig. 4c. This dataset

was a subset of the global temperature values originally

from the University of Dayton’s Temperature [54] archive.

To test on how TSL methods perform on on-periodic

datasets, historical price data of the most popular cryp-

tocurrency Bitcoin [44] was used. The time-series data

were gathered again from Kaggle [53] and it consists of the

daily prices from a period of 27 April, 2016 to 31 March,

2021 in USD as shown in Fig. 4d. The dataset was origi-

nally derived from various exchange APIs for the OHCL

(Open, High, Low, Close) prices of Bitcoin in a minute to

minute update interval.

To gauge the efficacy when fed data having extreme

characteristics, two additional datasets were also used. A

perfect simulated periodic dataset generated using the

equation f ðtÞ ¼ 3 sin tð Þ þ cos t=2ð Þ over a period of 56p
and 0.1 interval as represented in Fig. 4e was used to

signify perfect conditions. On the other hand, to simulate

the worst possible condition, a randomly generated dataset

using the equation f ðtÞ ¼ et was also included in our study

as shown in Fig. 4f.

Figure 4 represents a visual depiction of the raw data for

each of the datasets discussed above.

5.3 Parameter setting

In case of LSTMs, a stacked LSTM structure was used

along with grid search on training epochs ranging till 150,

batch size ranging till 64 and number of LSTM layers till

10 to find the best parameters according to the performance

metric of least RMSE. To maintain a fair comparison of

evaluation of models with/without TSL, same parameters

were maintained for both. The hyper-parameters obtained

during grid search on a limited search space of lags giving

the least RMSE were implemented in the AR model.In case

of AR, ARIMA and SARIMA, the statespace implemen-

tation of a python [47] package called statsmodels [55] was

used. It took in parameters of maximum time lags of the

AR auto-regressive component p, maximum degree of

differencing d, maximum order of the (MA) moving-
Fig. 4 a PM2.5 [42], b PM10 [42], c Temperature [43], d Bitcoin

[44], e Simulated and f Random datasets used in the study

Neural Computing and Applications

123

average component q and m as the number of observations

per seasonal cycle. Maximum value for each p, d and q was

set to 7 based on trial and error to find the least possible

RMSE values on the test set predictions. m too was also set

to 7 as most of the datasets were daily in nature and to

maintain uniformity while comparing. The seasonal com-

ponent in the SARIMAX method was switched on and off

while implementing ARIMA and SARIMA, respectively.

All the above parameter searching methodologies were

implemented and repeated for each dataset individually

(Fig. 5).

5.4 Evaluation metrics

Performance different deep learning and statistical methods

used with/without TSL is compared on the basis of root-

mean-squared error (RMSE) and mean average error

(MAE) in contrast to the test set mean. Since each error is

proportional to the size of the squared error, thereby

causing larger errors to disproportionately have a larger

effect on the RMSE. The test set mean is the mean of all

the values present in the testing set, thus helping in pro-

viding a perspective of the errors made during prediction.

In addition, relative improvements in performance of all

the methods on a particular dataset, were also studied and

Fig. 5 Performance of LSTM, AR, ARIMA and SARIMA with and without TSL in terms of RMSE and MAE implemeted on a–d PM2.5 [42], e–

h PM10 [42], i–l Temperature [43] and m–p Bitcoin [44] datasets

Neural Computing and Applications

123

displayed in the form of bar plots in Fig. 13 to analyse the

margin by which each method outperformed the others

when compared with the worst performing ones.

RMSE ¼

ffiPT
t¼1ðŷt � ytÞ2

T

s

;MAE ¼
PT

t¼1 ŷt � yij j
T

ð9Þ

where ŷt is the prediction made by the model and yt is the

actual value at instant t. Here T denotes the count of the

number of time-series samples (Fig. 6).

5.5 Results

To justify the effectiveness of TSL in improving the per-

formance when coupled with various models like LSTMs,

AR, ARIMA and SARIMA for time-series prediction,

comparisons are drawn between model combinations with

and without our proposed combination of pre and post

processing steps. These series of steps are repeated for each

dataset.

In case of the PM2.5 dataset, the largest increase in

performance occurred on using TSL coupled with auto-

regressive (AR) model (TSL ? AR), decreasing the RMSE

from 50.854 to 42.202 and decreasing the MAE from

42.404 to 33.131 shown in Fig. 5b. This resulted in a

greater positive correlation between actual versus predicted

values shown in Fig. 7f compared to Fig. 7b where solely

AR model was used without TSL for the same task. The

worst performance of sole AR can be attributed to it having

only a single auto-regressive component which struggles to

find periodicity in the dataset. Overall, the use of TSL

resulted in almost 10–17% decrease in RMSE and 10–22%

decrease in MAE across all the models compared to not

using TSL as depicted in Fig. 13a. The performance of all

the models in combination with TSL was similar.

For PM10 dataset, again TSL ? AR showed the greatest

improvement in performance compared to AR with RMSE

value decreasing from 77.08 to 65.44 and MAE value

decreasing from 62.213 to 50.138 depicted in Fig. 5h,

across a test set mean of 136.642. Thereby leading to a

greater positive correlation between actual and predicted

values shown in Fig. 8f. An almost 7.5–15% decrease in

RMSE and 8–19% decrease in MAE (as depicted in

Fig. 13b) can be seen across all the models when coupled

with TSL compared to not using TSL’s pre and post pro-

cessing steps. It can be inferred through Fig. 13b that,

solely used AR model performed the worst and even

though LSTM being a deep learning model having greater

hyper-parameters, a statistical model like SARIMA out-

performed it. Thus indicating the efficacy of simpler

models that take into account parameters like seasonality,

the time lag, degree of differentiation and order of the data.

Lastly, here it can also be seen that combining TSL with

different models show a similar performance.

In the case of the Temperature dataset that out our

approach resulted in 10–45% decrease in both RMSE and

MAE when implemented. It can be seen from Fig. 5i–l that

SARIMA model beat LSTM in both the evaluated metrics,

even though it having lesser components for data modeling.

The deep learning and statistical models used without TSL

could show a defined positive correlation of the actual

versus predicted values as depicted through the scatter

plots in Fig. 9a–d but combining with TSL lead to a much

better, defined correlation, seen in Fig. 9e–h. The

Fig. 6 Performance of LSTM, AR, ARIMA and SARIMA with and without TSL in terms of RMSE and MAE implemeted on Simulated (a–

d) and Random (e–h) datasets

Neural Computing and Applications

123

performance of all the models in combination with TSL

was similar.

In case of the Bitcoin dataset, a dissimilarity in perfor-

mance of some of the models in combination with TSL can

be seen. Even models performing solely without TSL can

be seen performing better. ARIMA and SARIMA demon-

strated the least RMSE and MAE values of 5198.992 and

4159.013, respectively, compared to all the other models.

The same performance of ARIMA and SARIMA in Fig. 10

can be attributed to the lack of periodicity in the dataset.

TSL was able to increase the performance only when

coupled with LSTM as depicted in Fig. 10a, e. A relative

performance improvement of 45% as depicted in Fig. 13d

compared to the LSTM model, which performed the worst

out of all the methods.

For the simulated periodic dataset, a massive increase in

performance can be seen, as compared to the worst per-

forming model (AR) through Fig. 6a–d where TSL is

coupled with AR, ARIMA and SARIMA, led to a big jump

in RMSE from 0.206 to 0.008 and MAE from 0.183 to

0.007 when put in comparison with sole AR. A significant

increase in positive correlation can also be observed when

comparing each scatter plot in Fig. 11a, b of models being

used solely compared to plots in Fig. 11f–h where TSL is

used in combination. This big increase in performance can

solely be attributed to the simulated dataset being perfectly

Fig. 7 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

PM2.5 dataset [42]

Fig. 8 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

PM10 dataset [42]

Neural Computing and Applications

123

periodic bt nature. In Fig. 6b the actual and predicted

values over the test-set are phase-shifted, thus resulting in a

peculiar radially distributed scatter plot. It can be observed

through Fig. 13e that combining TSL with models, leads to

a 5–92% increase in performance. Other than TSL ?

LSTM, the performance of all models in combination with

TSL were found to be similar. ARIMA and SARIMA not

only outperformed LSTM but (TSL ? LSTM) too, thus

showing their efficacy over perfectly periodic datasets.

In case of the pure Random dataset, although having

erroneous intermediate encodings, an expected behaviour

of convergence to the mean is witnessed in the models

which are used without TSL. But a more defined correla-

tion between actual and predicted values can be observed

in all the TSL combination models show in Fig. 12e–h. Not

all models used with TSL could perform better in terms of

RMSE and MAE metrics, as shown in Fig. 13f.

5.6 Discussion

For each real world or generated dataset used in this study

which had some degree of periodicity, the proposed

method of TSL was successfully able to increase the per-

formance (as evident from Figs. 5a–l and 6a–d), both in

terms of RMSE and MAE metrics when coupled with time-

series predictive models thus demonstrating its capability

to predict time-series data more effectively. Therefore,

combinations involving TSL which produce comparatively

Fig. 9 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

Temperature dataset [43]

Fig. 10 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

Bitcoin dataset [44]

Neural Computing and Applications

123

better performance showcase their capability in success-

fully learn repeating trends in data. This capability of

producing effective predictions is also evident from the

positive correlation of the actual versus predicted values in

each of the scatter plots (e–h) for Figs. 7, 8, 9 and 11.

The Bitcoin dataset is a real-world dataset having non-

periodic attributes, therefore TSL which takes in factors

like periodicity and repeating trends in the data was not

able to increase the performance of each model, compared

to the models being used solely. Similarly, due the Random

dataset being a generated random-walk, had no defined

periodicity in it, therefore coupling TSL to models didn’t

lead to an improvement in performance in each model.

Contrary to these two datasets, the Simulated dataset had a

pre-defined periodicity in it, thus leading TSL to learn

better from its trends. Moreover, resulting in a performance

increase of maximum 95% shown in Fig. 13e which is the

greatest increase in performance across all datasets com-

pared to using a model solely.

Compared to using ordinary time-series prediction

models, models coupled with TSL witness an increase in

performance in the range of 7.5–85% and 11.5–85% for

RMSE and MAE, respectively. This can be attributed to the

feature of TSL effectively capturing the repeating trends in

a time series, facilitating a model’s learning process to

capture information from previously occurred events, even

Fig. 11 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

Simulated dataset

Fig. 12 Actual versus prediction correlation plots for different deep learning and statistical methods (a–d) without TSL and (e–h) with TSL on

Random dataset

Neural Computing and Applications

123

with external factors like chaotic nature of data and amount

of data affecting it such as in case of real-world scenarios.

From the experiments performed, TSL is found to effec-

tively counter these points of failure along with the added

benefit of finding varying types of periodically repeating

trends (motifs) of granular time-series subsequences.

Upon carefully inspecting Figs. 5 and 6, an interesting

observation in case of the versions of SARIMA without

TSL can be noted. Even though having lesser parameters

than its deep-learning peer like LSTM, SARIMA outper-

forms them in all datasets used, with an average of 25%

increase in performance. This clearly shows that the added

complexity of deep learning models seemed to have

decreased the model efficiency and simpler statistical

models are found to not only perform better than more

complex deep learning ones but also has an added benefit

of overcoming the chaotic nature of daily and hourly real-

world datasets. Even simpler models like AR in

Fig. 13 Relative performance improvement in RMSE and MAE w.r.t. worst performing models over all the datasets used in the study

Neural Computing and Applications

123

combination with TSL with lesser runtime and system

requirements can be preferred compared to a deep learning

models like LSTMs which are prone to overfitting [8], get

affected by random weight initializations [3] and require

huge amounts of data for accurate predictions.

Finally, the similar performance of LSTM, AR, ARIMA

and SARIMA models when used in combination with TSL

over PM2.5, temperature and simulated datasets can be

attributed to them being able to correctly identify the label

the test set falls under. This model behaviour is caused due

to them accurately predicting the time-series labels thus

resulting in similar RMSE and MAE uponon

reconstruction.

6 Conclusion

In this study, a novel time-series labeling (TSL) method is

proposed which takes into account the periodic trends in a

time series, therefore, mimicking a model’s learning pro-

cess and when coupled with deep learning models like

LSTMs and statistical models like AR, ARIMA and

SARIMA, can improve their performance substantially.

The use of a wide variety of real world and generated

datasets with some being periodic and some non-periodic

in nature makes the study more thorough and robust.

A certain shortcoming of this proposed method lies in it

not being able to model non-periodic time-series data as

efficiently compared to periodic time-series data. In such

cases it may not always provide better results than using

ordinary models without TSL for time-series prediction,

which is demonstrated through the use of the Bitcoin and

Random datasets.

As TSL is fundamentally a feature engineering step, it

can be coupled with time-series models like auto-encoder,

bidirectional and convolution LSTMs or even with differ-

ent statistical models thus adding to its flexibility and

providing room for further study in this field. Also, TSL is

quite effective in democratising performance regardless of

model complexity thus making simpler models like AR

produce comparable predictions with respect to more

complex ones like LSTMs.

This study in its current form has not taken into account

the use of exogenous variables. Although models like AR,

ARIMA and SARIMA does not have the required flexi-

bility, its extended variants like ARIMAX and SARIMAX

and LSTMs can be used in such a case to give much more

accurate results.

Acknowledgements The research work of Asif Iqbal Middya is fun-

ded by ‘‘NET-JRF (National Eligibility Test-Junior Research Fel-

lowship) scheme of the University Grants Commission, Government

of India’’. This research work is also supported by the project entitled

‘‘Participatory and Realtime Pollution Monitoring System For Smart

City, funded by Higher Education, Science & Technology and

Biotechnology, Department of Science & Technology, Government

of West Bengal, India’’.

Declarations

Conflicts of interest The authors declare that they have no conflict of

interest.

References

1. Das R, Middya AI, Roy S (2021) High granular and short term

time series forecasting of pm2.5 air pollutant - a comparative

review. Artif Intell Rev. https://doi.org/10.1007/s10462-021-

09991-1

2. Middya AI, Roy S, Das R (2021) Spatiotemporal variability

analysis of air pollution data from iot based participatory sensing.

J Ambient Intell Humaniz Comput. https://doi.org/10.1007/

s12652-021-03536-8

3. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput. https://doi.org/10.1162/neco.1997.9.8.1735

4. Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time

series analysis: Forecasting and control, 5th edn. Wiley

5. Chang X, Gao M, Wang Y, Hou X (2012) Seasonal autoregres-

sive integrated moving average model for precipitation time

series. J Math Stat 8:500–505. https://doi.org/10.3844/jmssp.

2012.500.505

6. Al-Hmouz R, Pedrycz W, Balamash A (2015) Description and

prediction of time series: a general framework of granular com-

puting. Expert Syst Appl 42:1. https://doi.org/10.1016/j.eswa.

2015.01.060

7. Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of

time series motifs. KDD ’03. Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/

956750.956808

8. Caruana R, Lawrence S, Giles L (2000) Overfitting in neural nets:

backpropagation, conjugate gradient, and early stopping. In:

Proceedings of the 13th international conference on neural

information processing systems, NIPS’00. MIT Press,

pp 381–387

9. Leite D, Škrjanc I (2019) Ensemble of evolving optimal granular

experts, owa aggregation, and time series prediction. Inform Sci

504:95–112. https://doi.org/10.1016/j.ins.2019.07.053

10. Shao K, Zheng J, Wang H, Xu F, Wang X, Liang B (2021)

Recursive sliding mode control with adaptive disturbance

observer for a linear motor positioner. Mech Syst Signal Process

146:107,014. https://doi.org/10.1016/j.ymssp.2020.107014

11. Shao K, Zheng J, Wang H, Wang X, Lu R, Man Z (2021)

Tracking control of a linear motor positioner based on barrier

function adaptive sliding mode. IEEE Trans Ind Inf

17(11):7479–7488. https://doi.org/10.1109/TII.2021.3057832

12. Shao K (2021) Nested adaptive integral terminal sliding mode

control for high-order uncertain nonlinear systems. Int J Robust

Nonlinear Control 31(14):6668–6680. https://doi.org/10.1002/

rnc.5631

13. Afolabi D, Guan SU, Man KL, Wong PWH, Zhao X (2017)

Hierarchical meta-learning in time series forecasting for

improved interference-less machine learning 9(11):1. https://doi.

org/10.3390/sym9110283

14. Nath P, Saha P, Middya AI, Roy S (2021) Long-term time-series

pollution forecast using statistical and deep learning methods.

Neural Comput Appl 33(19):12551–12570. https://doi.org/10.

1007/s00521-021-05901-2

Neural Computing and Applications

123

https://doi.org/10.1007/s10462-021-09991-1
https://doi.org/10.1007/s10462-021-09991-1
https://doi.org/10.1007/s12652-021-03536-8
https://doi.org/10.1007/s12652-021-03536-8
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3844/jmssp.2012.500.505
https://doi.org/10.3844/jmssp.2012.500.505
https://doi.org/10.1016/j.eswa.2015.01.060
https://doi.org/10.1016/j.eswa.2015.01.060
https://doi.org/10.1145/956750.956808
https://doi.org/10.1145/956750.956808
https://doi.org/10.1016/j.ins.2019.07.053
https://doi.org/10.1016/j.ymssp.2020.107014
https://doi.org/10.1109/TII.2021.3057832
https://doi.org/10.1002/rnc.5631
https://doi.org/10.1002/rnc.5631
https://doi.org/10.3390/sym9110283
https://doi.org/10.3390/sym9110283
https://doi.org/10.1007/s00521-021-05901-2
https://doi.org/10.1007/s00521-021-05901-2

15. Middya AI, Roy S, Dutta J, Das R (2020) JUSense: a unified

framework for participatory-based urban sensing system. Mob

Networks Appl 25(4):1249–1274. https://doi.org/10.1007/

s11036-020-01539-x

16. Dutta J, Chowdhury C, Roy S, Middya AI, Gazi F (2017)

Towards smart city: sensing air quality in city based on oppor-

tunistic crowd-sensing. In: Proceedings of the 18th international

conference on distributed computing and networking, pp. 1–6.

https://doi.org/10.1145/3007748.3018286

17. Middya AI, Roy S (2021) Spatial interpolation techniques on

participatory sensing data. ACM Trans Spat Alg Syst 7(3):1–32

18. Kar D, Middya AI, Roy S (2019) An approach to detect travel

patterns using smartphone sensing. In: IEEE international con-

ference on advanced networks and telecommunications systems

(ANTS). IEEE. https://doi.org/10.1109/ants47819.2019.9118073

19. Patra S, Middya AI, Roy S (2021) PotSpot: Participatory sensing

based monitoring system for pothole detection using deep

learning. Multimed Tools Appl 80(16):25171–25195. https://doi.

org/10.1007/s11042-021-10874-4

20. Middya AI, Ray B, Roy S (2020) Auction based resource allo-

cation mechanism in federated cloud environment: TARA. IEEE

Trans Services Comput 1:1. https://doi.org/10.1109/tsc.2019.

2952772

21. Bose B, Dutta J, Ghosh S, Pramanick P, Roy S (2018)

D&RSense: detection of driving patterns and road anomalies. In:

3rd International conference on internet of things: smart inno-

vation and usages (IoT-SIU). IEEE. https://doi.org/10.1109/iot-

siu.2018.8519861

22. Rehena Z, Mukherjee R, Roy S, Mukherjee N (2014) Detection

of node failure in wireless sensor networks. In: Applications and

innovations in mobile computing (AIMoC). IEEE. https://doi.org/

10.1109/aimoc.2014.6785531

23. Ghosh K, Roy S, Das PK (2009) An alternative approach to find

the fermat point of a polygonal geographic region for energy

efficient geocast routing protocols: global minima scheme. In: 1st

International conference on networks & communications. IEEE

https://doi.org/10.1109/netcom.2009.30

24. Middya AI, Roy S (2021) Geographically varying relationships of

COVID-19 mortality with different factors in India. Sci Rep

11(1):1. https://doi.org/10.1038/s41598-021-86987-5

25. Dong R, Pedrycz W (2008) A granular time series approach to

long-term forecasting and trend forecasting. Physica A Stat Mech

Appl 387(13):3253–3270. https://doi.org/10.1016/j.physa.2008.

01.095

26. Froelich W, Pedrycz W (2017) Fuzzy cognitive maps in the

modeling of granular time series. Knowl-Based Syst

115:110–122. https://doi.org/10.1016/j.knosys.2016.10.017

27. Deng W, Wang G, Zhang X, Xu J, Li G (2016) A multi-granu-

larity combined prediction model based on fuzzy trend fore-

casting and particle swarm techniques. Neurocomputing

173:1671–1682. https://doi.org/10.1016/j.neucom.2015.09.040

28. Jana RK, Ghosh I, Sanyal MK (2020) A granular deep learning

approach for predicting energy consumption. Applied Soft

Computing 89, 106,091. https://doi.org/10.1016/j.asoc.2020.

106091

29. Rule induction for forecasting method selection (2009) Meta-

learning the characteristics of univariate time series. Neurocom-

puting 72(10):2581–2594. https://doi.org/10.1016/j.neucom.

2008.10.017

30. Gordon J, Bronskill J, Bauer M, Nowozin S, Turner RE (2019)

Meta-learning probabilistic inference for prediction. In: 7th

International conference on learning representations, ICLR 2019,

New Orleans, LA, USA, May 6–9, 2019. OpenReview.net.

https://openreview.net/forum?id=HkxStoC5F7

31. Yao H, Liu Y, Wei Y, Tang X, Li Z (2019) Learning from

multiple cities: A meta-learning approach for spatial-temporal

prediction. Association for Computing Machinery, New York,

NY, USA. https://doi.org/10.1145/3308558.3313577

32. Zhou S, Lai KK, Yen J (2012) A dynamic meta-learning rate-

based model for gold market forecasting. Expert Syst Appl

39(6):6168–6173. https://doi.org/10.1016/j.eswa.2011.11.115

33. Guo H, Pedrycz W, Liu X (2018) Hidden markov models based

approaches to long-term prediction for granular time series. IEEE

Trans Fuzzy Syst 26(5):2807–2817. https://doi.org/10.1109/

TFUZZ.2018.2802924

34. Leite D, Gomide F, Ballini R, Costa P (2011) Fuzzy granular

evolving modeling for time series prediction. In: IEEE interna-

tional conference on fuzzy systems (FUZZ-IEEE 2011),

pp 2794–2801 https://doi.org/10.1109/FUZZY.2011.6007452

35. Lemke C, Gabrys B (2010) Meta-learning for time series fore-

casting and forecast combination. Neurocomputing

73(10):2006–2016. https://doi.org/10.1016/j.neucom.2009.09.020

36. Ali AR, Gabrys B, Budka M (2018) Cross-domain meta-learning

for time-series forecasting. Procedia Comput Sci 126:9–18.

https://doi.org/10.1016/j.procs.2018.07.204

37. Abraham A (2004) Meta learning evolutionary artificial neural

networks. Neurocomputing 56:1–38. https://doi.org/10.1016/

S0925-2312(03)00369-2

38. Cecaj A, Lippi M, Mamei M, Zambonelli F (2020) Comparing

deep learning and statistical methods in forecasting crowd dis-

tribution from aggregated mobile phone data. Appl Sci 10:1.

https://doi.org/10.3390/app10186580

39. Yeh CM, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva

DF, Mueen A, Keogh E (2016) Matrix profile i: All pairs simi-

larity joins for time series: a unifying view that includes motifs,

discords and shapelets. In: IEEE 16th International Conference

on Data Mining (ICDM), pp 1317–1322. https://doi.org/10.1109/

ICDM.2016.0179

40. Law SM (2019) Stumpy: a powerful and scalable python library

for time series data mining. J Open Source Softw 4(39):1504.

https://doi.org/10.21105/joss.01504

41. Zhu Y, Imamura M, Nikovski D, Keogh E (2017) Matrix profile

vii: Time series chains: A new primitive for time series data

mining (best student paper award). In: IEEE international con-

ference on data mining (ICDM). https://doi.org/10.1109/ICDM.

2017.79

42. Ministry of Environment, Forest and Climate Change, Govt. of

India: Central Pollution Control Board. http://www.cpcb.nic.in/.

Accessed: 31 March 2021

43. Sudalai Raj Kumar: Daily Temperature of Major Cities (2020).

https://www.kaggle.com/sudalairajkumar/daily-temperature-of-

major-cities

44. Zielak: Bitcoin Historical Data (2021). https://www.kaggle.com/

mczielinski/bitcoin-historical-data

45. Bisong E (2019). Google Colaboratory. https://doi.org/10.1007/

978-1-4842-4470-8_7

46. Google colaboratory. https://colab.research.google.com. Acces-

sed 31 March 2021

47. Van Rossum G, Drake FL Jr (1995) Python tutorial. Centrum

voor Wiskunde en Informatica Amsterdam

48. van der Walt S, Colbert SC, Varoquaux G (2011) The numpy

array: a structure for efficient numerical computation. Comput

Sci Eng 13(2):22–30

49. Martı́n Abadi et al. (2015) Tensorflow:large-scale machine

learning on heterogeneous systems

50. Seasonal decomposition by moving averages. https://www.stats

models.org/stable/_modules/statsmodels/tsa/seasonal.html#seaso

nal_decompose. Accessed 03 March 2021

51. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Neural Computing and Applications

123

https://doi.org/10.1007/s11036-020-01539-x
https://doi.org/10.1007/s11036-020-01539-x
https://doi.org/10.1145/3007748.3018286
https://doi.org/10.1109/ants47819.2019.9118073
https://doi.org/10.1007/s11042-021-10874-4
https://doi.org/10.1007/s11042-021-10874-4
https://doi.org/10.1109/tsc.2019.2952772
https://doi.org/10.1109/tsc.2019.2952772
https://doi.org/10.1109/iot-siu.2018.8519861
https://doi.org/10.1109/iot-siu.2018.8519861
https://doi.org/10.1109/aimoc.2014.6785531
https://doi.org/10.1109/aimoc.2014.6785531
https://doi.org/10.1109/netcom.2009.30
https://doi.org/10.1038/s41598-021-86987-5
https://doi.org/10.1016/j.physa.2008.01.095
https://doi.org/10.1016/j.physa.2008.01.095
https://doi.org/10.1016/j.knosys.2016.10.017
https://doi.org/10.1016/j.neucom.2015.09.040
https://doi.org/10.1016/j.asoc.2020.106091
https://doi.org/10.1016/j.asoc.2020.106091
https://doi.org/10.1016/j.neucom.2008.10.017
https://doi.org/10.1016/j.neucom.2008.10.017
https://openreview.net/forum?id=HkxStoC5F7
https://doi.org/10.1145/3308558.3313577
https://doi.org/10.1016/j.eswa.2011.11.115
https://doi.org/10.1109/TFUZZ.2018.2802924
https://doi.org/10.1109/TFUZZ.2018.2802924
https://doi.org/10.1109/FUZZY.2011.6007452
https://doi.org/10.1016/j.neucom.2009.09.020
https://doi.org/10.1016/j.procs.2018.07.204
https://doi.org/10.1016/S0925-2312(03)00369-2
https://doi.org/10.1016/S0925-2312(03)00369-2
https://doi.org/10.3390/app10186580
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.21105/joss.01504
https://doi.org/10.1109/ICDM.2017.79
https://doi.org/10.1109/ICDM.2017.79
http://www.cpcb.nic.in/
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://www.kaggle.com/mczielinski/bitcoin-historical-data
https://www.kaggle.com/mczielinski/bitcoin-historical-data
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://colab.research.google.com
https://www.statsmodels.org/stable/_modules/statsmodels/tsa/seasonal.html#seasonal_decompose
https://www.statsmodels.org/stable/_modules/statsmodels/tsa/seasonal.html#seasonal_decompose
https://www.statsmodels.org/stable/_modules/statsmodels/tsa/seasonal.html#seasonal_decompose

Duchesnay E (2011) Scikit-learn: machine learning in Python.

J Mach Learn Res 12:2825–2830

52. US Department of State: air now international US embassies and

consulates. https://www.airnow.gov/international/us-embassies-

and-consulates/. Accessed 31 March 2021

53. Kaggle. https://www.kaggle.com/. Accessed 31 March 2021

54. Kissock JK (2021) Unversity of Dayton average daily tempera-

ture archive. http://academic.udayton.edu/kissock/http/Weather/.

Accessed 03 March 2021

55. Seabold S, Perktold J (2010) Statsmodels: Econometric and sta-

tistical modeling with python. In: Proceedings of the 9th python

in science conference, p 1. https://conference.scipy.org/proceed

ings/scipy2010/pdfs/seabold.pdf

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.airnow.gov/international/us-embassies-and-consulates/
https://www.kaggle.com/
http://academic.udayton.edu/kissock/http/Weather/
https://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf
https://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf

	Improving temporal predictions through time-series labeling using matrix profile and motifs
	Abstract
	Introduction
	Related works
	Background
	Matrix profile
	Time-series chains

	Problem formulation and proposed approach
	Problem statement
	Proposed approach
	Models
	Data modeling

	Evaluation and results
	Experimental setup
	Data description
	Parameter setting
	Evaluation metrics
	Results
	Discussion

	Conclusion
	Acknowledgements
	References

